College Algebra
Weekly Quiz 7

Name: \qquad

1. Consider an arithmetic sequence with $a_{1}=8$, and $d=12$.
(a) (2 points) Find its first 4 terms.
(a)
(b) (3 points) Find a_{n}.
(b)
(c) (2 points) Find a_{20}.
(c)
(d) (3 points) Find s_{n}.
(d)
(e) (3 points) Find s_{25}.
(e)
2. Consider an geometric sequence with $a_{1}=1$, and $r=-2$.
(a) (2 points) Find its first 4 terms.
(a) \qquad
(b) (3 points) Find a_{n}.
(b)
(c) (2 points) Find a_{10}.
(c) \qquad
(d) (4 points) Find s_{n}.
(d)
(e) (4 points) Find s_{8}.
(e)

3. Find

(a) (1 point) ${ }_{12} C_{4}$
(a) \qquad
(b) (1 point) ${ }_{8} P_{3}$
(b)
4. Consider $\left(2 x^{2}-y\right)^{11}$,
(a) (1 point) Find $\binom{11}{6}$.

(a)

(b) (4 points) Find the first three terms.
(b)
(c) (3 points) Find its 6 th term.
(c)
5. (2 points) Find $\binom{n}{n-1}$.
5.
6. (3 points) Find $64-32+16-8+\cdots$.
6. \qquad
7. Consider $1+3+3^{2}+3^{3}+\cdots+3^{n-1}=\frac{1}{2}\left(3^{n}-1\right)$,
(a) (1 point) Show that it works for $n=1$.
(a)
(b) (1 point) Show that it works for $n=2$.
(b)
(c) (5 points) Use mathematical induction to prove the statement is true for all natural numbers n.

